Kommentar: Vær kritisk over for halleluja om singulariteter og guldrandede algoritmer

Processorkraften vokser eksponentielt. Eller sådan kan det se ud, når vi skuer tilbage. I virkeligheden er matematikken lidt mere kompliceret - sandsynligvis er det en forkert fremskrivning ud fra et begrænset datasæt.

Tanken om en uendelig regnekraft, som kan tappes til at rive tæppet væk under veletablerede brancher, er besnærende set fra Silicon Valley. Men den bygger på antagelser om den fremtidige udvikling, som sandsynligvis er en forkert fremskrivning ud fra et begrænset datasæt.

Fænomenet bliver ofte betegnet som singulariteten. Det er meget populært sagt et punkt, hvor computernes regnekraft overstiger menneskets fatteevne - og det kun vil være computerne, som vil være i stand til at forbedre sig selv.

Det er en besnærende tanke, som desværre bygger på en fremskrivning af en udvikling, der antages at være eksponentiel. Ægte eksponentiel vækst er imidlertid ikke noget, vi finder i naturen, fordi eksponentielle funktioner meget hurtigt går mod uendeligt, og da de tilgængelige ressourcer ikke er uendelige, så vil der altid være en øvre grænse for vækst i naturen.

Eksponentielle funktioner kan være gode til at beskrive en tidlig proces, men du kan ikke bare trække en eksponentiel kurve frem og sige 'se, hvor er det vildt! Og lige om lidt bliver det endnu vildere!'.

Singularity: Ekstrem vækst med eksponentielle funktioner

I praksis er eksponentielle funktioner nemlig ikke holdbare i længden. Renteformlen er for eksempel fin nok til at beskrive dit 5.000 kroners kviklån til 20 procents rente om måneden over ét eller to år. Men over 30 år bliver det til 160.000.000.000.000.000.000.000.000.000.000 kroner - rundet ned til nærmeste kvintillion.

Et beløb i størrelsesorden med værdien af en hel planet, der består af diamanter.

Eksponentialfunktioner vokser ekstremt over tid. Ovenstående tal er større end antallet af stjerner i universet og er i omegnen af antallet af kulstofatomer i Hollands befolkning. Sæt tidskalaen op til 300 år for samme lån, og antallet af cifre vil være større end antallet af tegn i dette afsnit.

Singularitetstanken udspringer af en række udviklinger inden for computerteknologier, som ser ud til at vokse eksponentielt. Den bedst kendte er nok Moores Lov, som beskriver udviklingen i antallet af transistorer på en chip.

Den hænger tæt sammen med, hvor små transistorer vi kan fremstille, og selv hvis vi er meget optimistiske, så er det svært at forstille sig en transistor, der er mindre end ét atom.

Når vi når den nedre grænse for transistorernes størrelse, så skal vi skalere på anden vis. Eksempelvis med flere processorer eller større processorer.

Selv på denne vis vil fordoblingen ikke kunne fortsætte i det uendelige. På et tidspunkt vil vi have opbrugt hvert eneste siliciumatom i solsystemet. Hvis Moores Lov skulle fortsætte eksponentielt, så vil det ske, inden loven når at fylde 100 år.

Øvre grænse

Matematisk set er eksponentialfunktioner spændende, men når vi skal beskrive fænomener i naturen, så er en logistisk funktion som regel bedre. Den kan beskrive, at der ofte vil være et mætningspunkt, hvor vækstraten begynder at aftage.

Den logistiske funktion vil i øvrigt ligne en eksponentiel vækst i begyndelsen.

Det interessante er det øvre loft for funktionen, som ikke findes i den eksponentielle vækstfunktion. Det gør en væsentlig forskel, når Silicon Valleys singularitetsfortalere trækker eksempler som Airbnb og Uber frem som virksomheder, der vokser eksponentielt takket være teknologi.

Singularitetsfolkene er klar over, at eksempelvis Moores Lov ikke kan fortsætte i det uendelige, men et tilbagevendende argument lyder, at vi lige nu står på tærsklen til, at væksten bliver helt ekstrem.

Hvis man kigger på kurven for en eksponentiel funktion, så vil der se ud til at være et punkt, hvor kurven for alvor begynder at gå stejlt opad. Men det er en illusion, for den eksponentielle kurve vil altid se sådan ud, hvis man zoomer ind. Ser vi i stedet på en logistisk kurve, så er der et konkret punkt, hvor væksten begynder at aftage, og kurver flader ud.

Det er ikke ligetil at omsætte Moores Lov til en logistisk funktion og få svaret på, hvor meget regnekraft vi kan forvente at have til rådighed om 30 år. Ser vi i stedet på situationen lige nu, så lyder budskabet fra singularitetsfolkene, at algoritmen er dér, hvor man skal fokusere sin virksomhed.

Med algoritmen menes kunstig intelligens. Tanken er, at udviklingen af kunstig intelligens og dermed evnen til at udnytte den enorme regnekraft, der venter lige om hjørnet, er en nøgleressource for virksomheder i den nære fremtid.

Det bygger på singularitetsstjernen Ray Kurzweils forudsigelse om, at kunstig intelligens er tæt på at overhale menneskets intelligens. Ligesom det i vidensbaserede virksomheder er vigtigt at have adgang til menneskelig intelligens, så bliver det vigtigt at have adgang til kunstig intelligens.

Men den forudsigelse bygger på, at kunstig intelligens skalerer eksponentielt med regnekraften. Og her løber man ind i et andet problem ved eksponentielle funktioner. Tag kviklånet fra tidligere. Hvis man blot ændrer renten fra 20 til 18 procent, så vil gælden efter 30 år være cirka 500 gange mindre. Eksponentialfunktioner med forskellige vækstrater løber hurtigt fra hinanden.

Det er derfor ikke givet, at en forøgelse af vores tilgængelige regnekraft vil give en sammenlignelig forøgelse af kapaciteten for kunstig intelligens. Singularitetsargumentet er, at computerne vil nå et punkt, hvor computerne kan forbedre sig selv ud over de begrænsninger, der ligger for os mennesker.

Flader ud

Der er imidlertid et ubesvaret spørgsmål, når vi antager, at disse vækstfunktioner er logistiske og ikke eksponentielle, nemlig hvorvidt der eksisterer barrierer for udviklingen, inden den når så langt.

Hvis Moores Lov eksempelvis flader ud, inden vi når en kapacitet, hvorved det er muligt for en kunstig intelligens at forbedre sig selv, så vil singulariteten ikke være mulig.

Lige nu taler singularitetsfolkene om disruption drevet frem af teknologi, men hvis vi går bort fra at tale om simple eksponentielle udviklinger og i stedet bruger logistiske funktioner, hvordan ser markedet så ud?

Omsat til denne disruptive-tanke for virksomheder, så vil loftet for den logistiske vækstfunktion afspejle en maksimal markedsandel. I teorien vil Airbnb eller Uber kunne opnå en markedsandel på 100 procent, men hvis det bedste fit er en logistisk funktion, så vil tilvæksten pr. tidsenhed aftage, jo nærmere vi kommer de 100 procent.

Og så bliver det interessant at stille disse vækstfunktioner op mod hinanden. Hvad sker der, når en virksomhed som Airbnb nærmer sig en markedsandel på 100 procent, og væksten derfor aftager, hvis Moores Lov stadig er i færd med at vokse eksponentielt?

Hvis singularitetsfolkene har ret, så bør Airbnb selv blive disruptet af den næste virksomhed, der udnytter teknologiens eksponentielle udvikling, og den disruption vil ske endnu hurtigere end Airbnb selv var i stand til at skabe en disruption. Gæt selv, hvad der sker, når Airbnbs afløser når punktet, hvor der sker en ny disruption.

Eksponentielle funktioner løber fra hinanden

Men sådan en markedsudvikling er ikke kun afhængig af én parameter som Moores Lov. En anden måde at formulere Moores Lov er som et eksponentielt voksende antal beregninger, man kan få for en given pris. Altså flops pr. dollar.

På et tidspunkt vil prisen for den nødvendige regnekraft være en mindre afgørende faktor for din virksomhed.

Er du Uber 3.0, så vil prisen pr. kilometer være en anden faktor. Den kan formentligt også beskrives som en eksponentiel funktion takket være forbedringer som bedre ruteplanlægning, bedre brændstoføkonomi og selvkørende biler og intelligente trafikstyringssystemer.

Men som tidligere påpeget, så vil eksponentielle funktioner med forskellige vækstrater hurtigt løbe fra hinanden. Og da prisen pr. kilometer formentligt vil være en logistisk funktion, så er der et øvre loft.

Kunstig intelligens vil få stor betydning især i forhold til at behandle voksende datamængder. Men det er i praksis forkert at isolere en enkelt vækstkurve inden for teknologi og fremskrive den, uden at tage hensyn til, at den dels formentligt ikke er eksponentiel men derimod logistisk, og dels at den er afhængig af andre vækstkurver med andre vækstrater.

Mennesket har let ved at forstå logaritmer. Det er intuitivt, hvad der sker, hvis man fordobler eller halverer et antal. Men det intuitive ophører hurtigt, når eksponentialfunktionen for alvor begynder at vokse.

Det er der måske en god grund til, nemlig at i den virkelige verden er vi ikke omgivet af eksponentielle vækstfunktioner, men derimod logistiske funktioner.

Tips og korrekturforslag til denne historie sendes til tip@version2.dk
Følg forløbet
Kommentarer (8)
Christian Bierlich

Tak! Især for denne: "Hvis man kigger på kurven for en eksponentiel funktion, så vil der se ud til at være et punkt, hvor kurven for alvor begynder at gå stejlt opad. Men det er en illusion, for den eksponentielle kurve vil altid se sådan ud, hvis man zoomer ind."
Hvor har jeg dog ofte prøvet at overbevise jubeloptimistiske venner der har hørt en TED-talk med Ray Kurzweil om, at eksponentialfunktioner ikke har nogen "knæ", og at den der singularitetseksplosion, set fra et matematisk synspunkt, er noget sludder og vrøvl.

Frithiof Jensen

Airbnb og Uber frem som virksomheder, der vokser eksponentielt takket være teknologi.

Hver gang pengene flyder så er der selvfölgeligt nogle pop-konsulenter som lugter dem, hopper med på hype-vognen og begynder at skäre en niche ud for sig selv med begreber som lyder smarte, men som ikke kan efterpröves - hvilket naturligvis er det fine ved dem. Utopier sälger altid meget bedre end de kedelige realiteter.

Det er simpelt hen adgangen til "ubegränset" kredit som driver "väksten" hos
"EXO"'erne. Helt klassisk og gammeldags, det hele har meget, meget, lidt med "Transaktioner per Sekund" at göre.

Men hvis man kan bilde nogle venture kapitalister, politikere og CEx'ere ind at det er sådan, så kan man jo sälge en hel del värktöjer, foredrag og konsulentydelser så länge hype-bölgen varer - "modellen" holder jo så länge renten ikke stiger.

Udviklingen har generelt accelereret, det må man indrömme: Det er den samme generation som i sin tid var "dot.bomb"-investorer, der i dag köber "mips.bomb"s.

Filip Larsen

[...] den der singularitetseksplosion, set fra et matematisk synspunkt, er noget sludder og vrøvl

Jeg tror, at der med "eksplosion" henvises til hvad almindelige mennesker vil opfatte som, at noget ændre sig så hurtigt, at det føles "ude af kontrol", hvad enten væksten som sådan opfattes som et gode eller onde, og om kurven i princippet er en logistisk eller begrænset kurve. Der er selvfølgelig grænser for eksponentiel vækst i den fysiske verden, men indtil man rent faktisk kan observere, at væksten ikke længere er eksponentiel så ved man ikke med sikkerhed hvornår det tidligst begynder at flade ud.

Tager man eksempelvis Moores lov, så har grænsen for vækst gentagende gange være proklameret når man har nået grænsen for en eller anden teknologi hvorefter kurven så blot fortsatte eksponentielt via en ny teknologi.

Og lige i disse år synes kurven for global beregningskraft (som tidligere har været meget styret af Moores lov) at vokse ved at skalere ud, dvs. ved, at der regnes mere og mere i parallel, og her synes den næste praktiske grænse kun at være energiforbruget. Tager man fx den nuværende effektivitet på omkring 4,5 MFlops/W så vil man med 20 TW (den globale energiproduktion i 2014) teoretisk kunne danne omkring 100 EFlops (exa-flops) hvilket skulle være rigeligt til at simulere en menneskehjerne. Sammenligner man med hjernens "beregningseffektivitet" på 10 PFlops/W så har vores computere alene på den front teoretisk set stadig plads til 9 størrelsesordener af forbedring, og måske er det nok til at menneskehedens samlede beregningsevne med intens forskning kan forsætte med at vokse eksponentielt de næste mange år endnu. Så muligheden for en "singularitet" synes ikke nem at afvise på forhånd.

Ditlev Petersen

Man kan i princippet bygge større og større computere i lang tid endnu. Måske er vi i nærheden af grænsen for, hvor små transistorer, det er fysisk muligt at få til at fungere pålideligt. Man kan så stakke dem i flere lag (det giver en masse andre spændende problemer) eller man kan øge antallet af cpu'er. Men Hoppers Ledning begynder også at få en betydning. Hvis cpu'erne i større omfang skal kommunikere indbyrdes, bliver den fysiske afstand et problem (og har været det meget længe). Man kan sikkert begrænse behovet for langdistancekommunikation og stadig få store fremskridt. Menneskets hjerne fungerer jo glimrende, trods de store afstande. Men vores reaktionstid er meget større end en lille fugls kan være, for slet ikke at tale om et insekt. Så selvfølgelig vil man støde på forskellige lofter undervejs og være nødt til at finde på noget helt andet.
Det mest grinagtige element i sf-serien Blake's 7 er den altkontrollerende supercomputer, der er anbragt yderst i Mælkevejen.

Christian Bierlich

Filip, jeg ved ikke noget om hvordan folk føler eller bedømmer en udvikling. Jeg ved bare, at de der taler om at eksponentialfunktioner har et singularitetspunkt hvorefter de "eksploderer" tager fejl. De har simpelthen ikke fulgt godt nok med i gymnasiets matematikundervisning. Og alle forudsigelser der bygger på den antagelse vil derfor også være tvivlsomme.

Filip Larsen

Vi kan godt blive enige om, at ordet eksplosion ikke er en speciel anvendelig matematisk fagterm, men det forhold, at det "lige pludseligt går stærkt" for en eksponentiel udvikling kan altså godt gives en rimelig matematisk definition hvis man ønsker, også selvom eksponentialfunktionen matematisk set er skalainvariant.

Hvis man fx sammenligner en eksponentiel udvikling med en lineær udvikling, så vil den eksponentielle udviklingen for alle tider kort inden den krydser den lineære udvikling være størrelsesordner mindre, og for alle tider kort efter være størrelsesordener større, end den lineære udvikling. Det er i den betydning man skal opfatte ordet "eksplosion" i forbindelse med en singularitet - at noget på kort tid vokser uhæmmet fra næsten ingenting til ødelæggende størrelser relativt til andre strukturer.

Men uanset hvad, så er jeg ret sikker på, at budskabet fra seriøse singularitetsforskere ikke er at promovere en eller anden alternativ definition af eksponentialfunktionen, men derimod at beskrive realistiske scenarier for hvordan visse teknologier kan accelerere ud af kontrol. Og det er det budskab der er interessant at forholde sig til.

Knud Fjeldsted

Jeg mener at der her er tale om misbrug af begrebet singularitet. En singularitet i matematisk forstand er et punkt i eller på randen af definitionsmængden som har det karakteristikum at en egenskab på dette sted ikke mere gælder. Et typisk eksempel er at nævneren i en brøk bliver nul. Et andet er punkter gennem hvilke der ikke går netop een løsningskurve til en differentialligning men uendelig mange.
Det er rent vås at tale om et singularitetspunkt for en exponentialfunktion ved hvilket den pludselig får travlt med at vokse. I så fald er ethvert punkt nemlig singularitetspunkt for eksponenrialfunktionen. Og her må jeg stå af.

Filip Larsen

Et typisk eksempel er at nævneren i en brøk bliver nul. Et andet er punkter gennem hvilke der ikke går netop een løsningskurve til en differentialligning men uendelig mange.

Med singularitet menes der i denne sammenhæng netop dette - at tilstanden for et modelleret system over tid har en vis sandsynlighed for at udvikle sig til en tilstand hvor modellen ikke længere er gyldig og vi dermed ikke mere kan modellere hvad der vil ske. Og selv hvis tilstanden holder sig indenfor modellens gyldighedsområde, så kan en eksponentiel udvikling af dele af tilstanden betyde, at usikkerheden af den samlede tilstand over tid vokser til størrelser der er sammenlignelige med udfaldsrummet, dvs. man aner ikke hvilken bane systemet rent faktisk ender med at tage. Dette svarer fx helt til de egenskaber et kaotisk system har (uden dog dermed at sige, at en singularitet medfører at systemet generelt er kaotisk).

Log ind eller Opret konto for at kommentere
Pressemeddelelser

Welcome to the Cloud Integration Enablement Day (Bring your own laptop)

On this track, we will give you the chance to become a "Cloud First" data integration specialist.
15. nov 2017

Silicom i Søborg har fået stærk vind i sejlene…

Silicom Denmark arbejder med cutting-edge teknologier og er helt fremme hvad angår FPGA teknologien, som har eksisteret i over 20 år.
22. sep 2017

Conference: How AI and Machine Learning can accelerate your business growth

Can Artificial Intelligence (AI) and Machine Learning bring actual value to your business? Will it supercharge growth? How do other businesses leverage AI and Machine Learning?
13. sep 2017